Farm Talk

Crops

July 30, 2013

Researchers discover genes resistant to soybean pathogen

Parsons, Kansas — Purdue University researchers have identified two genes within the soybean genome that are highly resistant to a soilborne pathogen that causes Phytophthora root and stem rot, a disease that costs U.S. soybean growers more than $250 million annually in lost yield.

The discovery, made by a team of scientists led by Jianxin Ma and Teresa Hughes, could lead to the development of soybean cultivars better able to withstand the pathogen Phytophthora sojae. The Purdue research was published online by Theoretical and Applied Genetics and is to appear in the journal's November print edition.

Naturally occurring Phytophthora sojae resistance exists in soybean germplasm. Most previous resistant genes, however, have lost their ability to fight off the pathogen, which has developed immunity to them. Together, the two newly identified genes appear stronger than most earlier genes and could remain viable for many more years, said Ma, a soybean geneticist in Purdue's Department of Agronomy.

"These two genes demonstrate resistance to all the predominant isolates of this pathogen found in Indiana and many other isolates that are virulent to previously identified resistance genes," he said. "If these two genes are effectively used in Indiana and other Midwest soybean crops, an annual net increase in soybean production would be anticipated."

Phytophthora sojae has been a problem for Indiana soybean farmers since it was first found in the state in 1948. The pathogen thrives in wet, cool conditions and produces spores that move in water and onto soybean roots. Diseased roots form lesions that can move up the stem and kill the entire soybean plant. The pathogen also produces spores that can remain dormant in soil through the winter and become active when warm weather returns.

Even in normal crop years Phytophthora sojae is responsible for 8-15 percent crop loss nationwide.

Because the soybean plant's own genetic resistance to Phytophthora sojae has proven to be the best way to control the pathogen, the mapping of the soybean genome in recent years has improved the odds of finding other resistant genes. But the Purdue team made its discovery looking for a genetic answer to another soybean problem, said Hughes, a U.S. Department of Agriculture plant pathologist and adjunct professor in Purdue's Department of Botany and Plant Pathology.

"We were originally looking for possible resistance to Asian soybean rust," she said. "Our experimental locations had high Phytophthora pressure, and we found that these genes did very well against that disease. That was our first clue that they might have good resistance to Phytophthora sojae."

During its three years of study the Purdue researchers have developed molecular "markers" — identifying tags — that can be used to expedite the transfer of the resistant genes to soybean cultivars. That process is known as marker-assisted selection.

"There are about 46,000 predicted gene models in what we call the reference soybean genome," Ma said. "These markers allow rapid pyramiding of multiple resistant genes into a single cultivar in order to boost the effectiveness of resistance."

Although Phytophthora sojae eventually could render the two resistant genes ineffective, the pathogen itself likely would become much weaker, Hughes said.

"Every time a pathogen overcomes resistance in its plant host it has to give up something itself," she said. "So if it turns out that in order for the pathogen to overcome this new resistance it ends up having a fitness penalty — for instance, it can't compete as well or it doesn't survive as long in the soil — then these genes will last longer.

"We believe these genes are durable, but we don't know enough about them yet to predict how effective they could be, and for how long."

Ma, Hughes and collaborating Purdue researchers Scott Abney, Feng Lin, Meixia Zhao, Jieqing Ping, Austin Johnson and Biao Zhang plan to continue their research. They next hope to move their work from greenhouses and into field trials. After that the resistant lines could make their way into commercial cultivars.

"This has the potential to provide a higher profit margin for soybean farmers, as well as reducing the use of harmful chemicals and promoting a cleaner environment," Ma said.

The Theoretical and Applied Genetics paper, "Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B," can be viewed athttp://link.springer.com/content/pdf/10.1007%2Fs00122-013-2127-4.pdf

The Purdue research was supported by checkoff funds from the Indiana Soybean Alliance. £

1
Text Only
Crops
  • To store corn or not to store corn, that is the question

    The majority of annually produced crops such as corn obviously have to be stored. For corn producers, the question at harvest time will be who will store the portion of the crop which has not yet been sold?

    July 29, 2014

  • Scientists complete chromosome based draft of wheat genome

    Several Kansas State University researchers were essential in helping scientists assemble a draft of a genetic blueprint of bread wheat, also known as common wheat. The food plant is grown on more than 531 million acres around the world and produces nearly 700 million tons of food each year.
    The International Wheat Genome Sequencing Consortium, which also includes faculty at Kansas State University, recently published a chromosome-based draft sequence of wheat's genetic code, which is called a genome. "A chromosome-based draft sequence of the hexaploid bread wheat genome" is one of four papers about the wheat genome that appear in the journal Science.

    July 22, 2014

  • Drought & poor wheat harvest in Kan. has effects on nat’l economy

    The Kansas wheat harvest may be one of the worst on record — and the loss doesn't just hurt Kansas, according to a Kansas State University expert.

    July 15, 2014

  • Watch for corn leaf diseases

    In general, corn in southeast Kansas looks about as healthy as any reasonable producer might hope.

    July 1, 2014

  • Consider wind when applying herbicides

    Jill Scheidt, agronomy specialist with University of Missouri Extension in Barton County, scouted fields west of Lockwood on June 18 for the crop scouting program.

    June 24, 2014

  • WheatTour-007.jpg SW Mo. wheat tour yields nutrient tips

    Laying down nitrogen on the wheat fields is quite possibly one of the most complex and critical operations facing producers.

    June 17, 2014 3 Photos

  • Corn planting nears completion, early condition good

    With corn planting nearly complete and emergence keeping pace with the five-year average, the U.S. Department of Agriculture released its first forecast for the condition of the 2014 U.S. corn crop.

    June 10, 2014

  • Harvesting short wheat

    In many areas of Kansas, prolonged drought has resulted in short wheat and thin stands. Harvesting wheat in these situations can be a challenge.

    June 3, 2014

  • Controlling large weeds in Roundup Ready soybeans

    Controlling large weeds is often considerably more difficult than controlling smal-ler weeds. The following are some suggestions for controlling larger troublesome weeds in soybeans.

    May 28, 2014

  • aflatoxin-corn.jpg Aflatoxin risk looms large for corn growers

    To diversify their farms and tap into high demand for one of agriculture’s most profitable crops, dryland farmers more familiar with growing wheat and milo are eager to try their hand at corn.

    May 21, 2014 1 Photo

Hyperlocal Search
Premier Guide
Find a business

Walking Fingers
Maps, Menus, Store hours, Coupons, and more...
Premier Guide
Seasonal Content